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Madison

Near Detector: 980 tons
Far Detector: 5400 tons

Fermilab ' 10 km Soudan
730 km

12 km




* 120 GeV protons
* 1.9 second cycle time
* 4x10'3 protons/pulse

Neutrinao .

Beam gl * Single turn extraction
Fto Hinnesota .7 U (10us; possible upgrade to
e 1 ms resonant extraction)
1 '_41’.'_:;._,
* 4x10% protons/year
5 Main * 700 m x 2 m diameter
SR Rine decay pipe for neutrino
fHain ° AR beam.
Jlegt. * 200 m rock absorber.

. “‘w%‘
* Near detector complex.




120 GeV protons hit target (102/Protons per year!)
m" (“pions”) produced at wide range of angles
Magnetic horns to focus rt*
n* decay to u*v in long evacuated pipe
Left-over hadrons shower in hadron absorber

Rock shield ranges out u*

-XX

v beam travels through earth to experiment

Decay Pipe
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Target Horns




Magnetic Horns

Outer Conductor

Stripline

Inner Conductor

* Large toroidal magnetic field

* Requires large current, 200 kAmp
* Thin inner conductor, to minimize 7+ absorption

Insulating Ring

* Water spray cooling on inner conductor
* Most challenging devices in beam design
* Prototype test 1999-2000 to check design

Drain



P(m) ~ 300 MeV \ 0 043K,
n . Y \ to detector 1 +7,%6,2
N 300 Me ,
) mf--1--7 P® X - Tx
p i (1+7,%6,%) 2

* Without focusing, flux to detector is only ~1/25 of flux in pion direction

* With a parabolic shaped horn inner conductor,
B dL (i.e. p, kick) is linear with radius -> lens

A

fop
*The focal length is proportional to p:
choice of target to horn distance selects momentum

* T focused parallel by horn 1 go through hole in horn 2;
somewhat under or overfocused 1 are focused by horn 2




PH2 Horn Configurations and
Neutrino Spectra
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The Hadronic Hose

U ———_—__—-Te 9 . Far Detector
—_ Decay Pipe ™ Near Detector
‘-H._EL
2
1/L distribution to Near Detector 0 to Near Detector
depends on: larger than
® to Far Detector
* where hit decay pipe wall hence
* pion lifetime E, Flux are different
1 1 1 2
E, o > o v Flux o 2( )
1+vy © L 1+ (s
de dhe W e de e

HADRONIC HOSE CONCEPT *** ***

Continuous focusing reduces Far/Near difference

Wire in decay pipe
I= 0.5 to 1 kA

|:taﬁ__ﬂf~"' S —— ti ------ - Near Detector

-

dont let hadrons hit walls Angular distribution
to Far and Near
(" but can't change pion lifetime) now much more

similar



Spectra from Hadronic Hose
vs Conventional Focus
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What Neutrino Beam Energy
to Choose?

MINOS
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(Sample Osc. Prob. at Soudan spanning
Kamiokande and SuperK regions)
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Soudan Underground

1

| i The Soudan shaft limits
4 objects to a maximum
size of 1m by 2m by 9m

Headframe of the
Soudan Iron Mine (former)
State Park and Laboratory



Pars
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Area reserved
for emulsion
detector

Shaft
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Far Detectt

25,800 m ° Active Detector Planes
4 cm wide solid scintillator strips
WLS fiber readout

31m
(2 sections 15 m long)
Magnetized Fe Plates
486 Layers x 2.54 cm Fe
5.4 KT Total Mass

Magnet coil
<B>=15T




8 modules cover one
far detector steel plane

Four 20-wide modules
in middle (perp. ends)

Four 28-wide modules
on edges (45 deg
ends)

Two center modules
have coil-hole cutout
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Near Detector Side View

A

(A A OO T .

Detector and Support
Coil Structure




Total area of steel
(without ears) = 16.2 m2

Area of “partial cover” modules
in Forward section ~ 6 m2

Area of “full cover” modules in
Spectrometer section ~ 13.2 m2

Some changes under study.
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&* Scintillator Strip WLS Fiber Readout

8m
== =

wavelength-shifting fiber | (1.2 mm diam.)

—=>
to optical
connector

1.0 cm x 4.1 cm extruded polystyrene scintillator

* Scintillator strips are commercially extruded polystyrene
— PPO and POPOP fluors

— Wavelength-shifting (WLS) fiber groove
— Co-extruded TiO, reflective cap

* Groups of 20 or 28 strips are assembled into “modules”



Extruded Scintillator

MINOS

Cross section of co-extruded

scintillator strips




Schematic View of the
MINOS Scintillator System

e Extruded scintillator, 4cm wide

* Two-ended WLS fiber
readout.

* Strips assembled into
20 or 28-wide modules.

* WLS fibers routed to
optical connectors.

* Light routed from modules
to PMTs via clear fibers.

* 8 Fibers/PMT pixel in far
detector. (Fibers separated
by ~1m in a single plane.

* 1 Fiber/PMT pixel in near
detector (avoids overlaps).

* Multi-pixel PMTs
(Hamamatsu M16)

Clear Fiber Ribbon Cable (2-6 m)

Scintillator Module

ptical Connecto

Connection to=
electronics

A
Optical Connector

8 m

Connection to

Optical Connector

Optical Conne?or

Clear Fiber Ribbon Cable (2-6 m)
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® Module Components and Design

* The far detector module
design is complete.

« Final drawings exist for all
components. Example

« Light-tightness concerns\’

addressed.

« Final prototype components
have been produced for use
in “dress rehearsal”
production at Argonne.

* Orders for module
components are being
developed.

Assembly Drawing for
I side-out snout manifold
op variable
width seal S
\ Top Al cover
\ * [ - \
Top Al light case
Fiber routing e
manifold ~ S —

.«(((«(««««M«(‘((((\

>
Q/\ Bottom Al light case \

A
—\
S —-0
Light injection

manifold

Bottom variable O,
width seal 9

Y Bottom Al Cover
\ -




We have changed the cable design:
« Adopt design used by DO.

* Already proven design'

* Fire safety issues already satisfied!
« Better light seal (problem found in 4PP)
« More robust.
« Lower cost!

Cohnhectot Cohhectot

Conhdu

Cable mockup in Muon Lab is being used
to better define cable runs.




Transmittance of Clear
Fiber

“

Clear Fiber Cable Transmittance — 4PPT

PIMST 6.1 m

Pimar

AL R1]

PIM2ZT-19m

PiMgT

Connector transmittance not included
Mecasurcd cable attenuation length = 11.3 m
Typical transmittance variance with cable ~ 4.5%




Light Throughput of Fiber
Connectors

* 30-wide optical connectors have been successfully injection
molded (important for low cost).

* Ready to proceed with full production.

Typical Light Transmission Results

i dry aw = 0. 8?95
mRTV awg = 0&52

fiber number




MUX Boxes

* Far detector MUX box design is complete.

* Final prototype being assembled and tested for light T —

seal.

&

[

8

Connector pair

J

ML

Cookie Mounting
Plate

PMT Compartment



- M16 and Mé64 for
| MINOS

Karol Lang MINOS Collaboration 2
The University of Texas Meeting
Fermilab, April 13-15,

2000
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Summary of M16

Response Measurements
e ————————

Gain Distributions for 16 Tubes Relative efficiencies for 16 tubes

Ciain distributions for 128 8X fiber positions, 16 PMT scuns Number of photoelectron distributions for 128 8 fiber pasitions, 16 PMT scans
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M64 Measurements

* M64 response looks M64 scan summary at 40 p..
. . 30 o
very similar to M16 » b Pt
. ES : 9e28c3
(not a surprise). g =wf 1 of04as
° 15 B - . . .
5 : Efficiency distributions (not
® o s
M64 QE may be S: 0F normalized between tubes)
slightly lower than new p ]
0 L h (um P} | IV S TR U TR T N T T
M16s ) 0 20 wmean p_e.so 80 100
* M64s are more efficient - 9400c3
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system. s SE
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MINOS Physics Goals

* Demonstrate Oscillation Behavior

« Precise measurement of CC energy distribution between
near and far detector (1-2% systematic uncertainty).

« “Standard” or non-standard oscillations?
* Precise Measurement of Oscillation Parameters

* Precise Determination of Flavor Participation

« Number of CC v, events far/near ~1-2%: Probability for
Vy— VY, oscﬂlatwn

« Number of CC v, events far/near: probability for Vi — Ve
oscillation down to about 2%.

« Number of NC events far/near: probability for V=V
oscillation down to about 4%.

sterile



Muon Neutrino CC
Events in MINOS
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Muon

* A muon with enough energy to penetrate beyond the hadronic shower
region is produced in most of these events, producing a “tail”.

* The muon will curve as it moves through the magnetic field. Momentum
1s measured by range and curvature at low energies (typically below
about 5-8 GeV) and curvature at high energy.

* In addition to the muon, “nuclear fragments” will be observed.




MINOS

Neutral Current Events in

TNuqle gamengy’
V %>
.................... O :ﬁ>
K\ N " ap

* Just nuclear fragments... no muon.

.........

(not observed)

* EM showers from n% typically have lower energy than.



Electron Neutrino Events
in MINOS

* Electron Neutrino Events:

<

A

An electron is produced in most of these events.

<

A

The electron produces a very intense “shower” of particles which
produce a large amount of light in a narrow “cigar-shaped” region.

« The shower extends a much shorter length than muons.

<

A

Nuclear fragments can also be produced.



“Sterile” Neutrino Events
in MINOS

* “Sterile” Neutrino Events:

« “Sterile” neutrinos never stop in the detector! We can only “see”
them by predicting how many of the other neutrino types we
should have seen.

« Its like waiting for a bus that never shows up. The schedule says it
should have been there but something must have happened to it!



Measurement of
Oscillations in MINOS
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Flavor participation (including NC) measured to a few percent.




MINOS Oscillation Mode Sensitivity

( Discriminate v,—V, VS. V=V )

Discrimination between v,— v, and v,—> v,
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? MINOS Low Am? Sensitivity
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